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Abstract: A constrained linear optimal control for a low-power industrial gas turbine 
based on input-output linearization is proposed in this paper. It uses a nonlinear state 
space  model  of  the  gas  turbine  in  input-affine  form  based  on  first  engineering 
principles.  According  to  the  control  aims  the  nonlinear  model  is  input-output 
linearized and an LQ servo controller is developed for the I/O linearized model. The 
hard constraints for the state and input variables are kept by applying constrained 
finite time linear optimal control.
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1. INTRODUCTION

Gas turbines are important and widely used prime movers in transportation systems. Besides 
this main application area, gas turbines are found in power systems where they are the main 
power generators [1]. Therefore the modelling and control of gas turbines is of great practical 
importance.
Control techniques applied for gas turbines are most often based on linear controllers. These 
controllers are mainly variants of linear quadratic (LQ) controllers, e.g. in [2,3]. An LQ servo 
controller is applied to track a reference signal in [4]. LQG/LTR technique [5] and robust 
control system design has also been performed [6] for gas turbines.
In nonlinear control, however, the streamline is the application of adaptive (e.g. in [7]) and 
adaptive predictive (e.g. in [8]) control approaches, but there is a big lack of "classical" state-
space nonlinear control. As a rare exception, in [9] the equation of mass flowrate of fuel (as 
the  control  input  of  a  simplified  single  input-single  output  model)  is  determined  by  a 
nonlinear method.
In order to apply nonlinear state-space model based control, one has to develop a relative 
simple yet powerful dynamic model that is able to describe the nonlinear dynamic behavior 
of the gas turbine. A strongly nonlinear state space description of a low power gas turbine has 
been developed based on first engineering principles in an earlier paper [13]. Because of 
nonlinearities,  however,  the nonlinear  dynamic analysis  (controllability,  observability  and 
stability analysis) of the developed model can only be performed with difficulty, or in some 
cases it can not be computed symbolically at all [14].
An advanced and nonlinear control Lyapunov-function based block-structured controller [15] 
has been proposed for the same gas pilot-plant turbine that is used as a case study in this 
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paper. In a PhD thesis [16], this nonlinear controller is compared with an LQ servo controller, 
as a reference case known from the literature. As a result of the comparison it is pointed out 
that  the  system  controlled  by  the  nonlinear  control  Lyapunov-function  based  controller 
exhibits similar or better qualitative and quantitative behavior, than the system controlled by 
the LQ-servo controller.  However,  the design of the nonlinear control Lyapunov-function 
based controller included some key heuristically performed steps that were strongly specific 
to the pilot-plant gas turbine model. Therefore, the need to apply an alternative technique a 
nonlinear controller based on input-output linearization has also been identified [17].

2. THE DYNAMIC MODEL OF THE GAS TURBINE

The  main  parts  of  a  gas  turbine  include  the  inlet  duct,  the  compressor,  the  combustion 
chamber,  the turbine and the  nozzle  or  the gas-deflector.  The interactions  between these 
components are fixed by the physical structure of the engine. The operation of all types of gas 
turbines is basically the same. The air is drawn into the engine through the inlet duct by the 
compressor, which compresses it and then delivers it to the combustion chamber. Within the 
combustion chamber the air is mixed with fuel and the mixture is ignited, producing a rise in 
temperature and hence an expansion of the gases. These gases are exhausted through the 
engine  nozzle  or  the  engine  gas-deflector,  but  first  pass  through  the  turbine,  which  is 
designed to extract sufficient energy from them to keep the compressor rotating, so that the 
engine is self sustaining.

2.1 Modeling assumptions
In  order  to  get  a  low order  dynamic  model  suitable  for  control  purposes  the  following 
modelling assumptions should be made.

General assumptions
• Constant  physico-chemical  properties  are  assumed  in  each  main  part  of  the  gas 

turbine, such as specific heat at constant pressure and at constant volume, specific gas 
constant and adiabatic exponent.

• Heat loss (heat transmission, heat conduction, heat radiation) is neglected.
Other assumptions

• In the inlet duct a constant pressure loss coefficient (σI) is assumed. 
• In the inlet and in the outlet of the compressor the mass flow rates are the same: νCin=

νCout=νC , and there is no energy storage effect: U2=constant.
• In  the  combustion chamber  constant  pressure  loss  coefficient  (σComb)  and constant 

efficiency of combustion (ηComb) are assumed; the enthalpy of fuel is neglected, and 
the combustion chamber is assumed to be a perfectly stirred region (balance volume). 
It means that a finite dimensional concentrated parameter model is developed and the 
value of the variables within this balance volume is equal to that at its outlet.

• In the inlet and in the outlet of the turbine the mass flow rates are the same: νTin=νTout=
νT , and there is no energy storage effect: U4=constant.

• In the gas-deflector a constant pressure loss coefficient (σN) is assumed.

2.2 Conservation balances
The nonlinear state equations are derived from the laws of conservation principles. Dynamic 
equations  come  from the  conservation  balances  constructed  for  the  overall  mass  m and 
internal energy. The development of the model equations is performed in the following steps.
Conservation balance of the total mass:

in out
dm
dt

ν ν= −

Conservation balance of the internal energy, where the heat energy flows and the power 
terms are also taken into account:
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in in out out
dU i i Q P
dt

ν ν= − + +

We can transform the above energy conservation equation to its intensive variable form by 
considering the dependence of the internal energy on the measurable temperature:

( )v v v
dU d dm dTc Tm c T c m
dt dt dt dt

= = +

From the two equations above we get a state equation for the temperature as state variable:
( )in in out out v in out

v

i i Q P c TdT
dt c m

ν ν ν ν− + + − −
=

The ideal gas equation (pV=mRT) is used together with the two balance equations above to 
develop an alternative state equation for the pressure:

( )in in out out
v

dp R i i Q P
dt c V

ν ν= − + +

Conservation balance of the mechanical energy of the compressor-turbine shaft:

( ) ( )sh
3 4 ch 2 1

32
50

aft
T pgas me C pair load

dE
c T T c T T M

dt
ν η ν π= − − − −

2.3 Simplified nonlinear model in input-affine form
From the above equations  (using the constitutive  algebraic  equations,  too),  the nonlinear 
input-affine form of the gas turbine model has the following structure.

ẋ= f  xg x u
y=hx 

where the state vector is x=[mCo p3 n]T , the input variable is u=v fuel . The set of 

possible disturbances is d=[ p1 T 1 M load ]
T , and the measurable output vector is 

y=[T 4 p3 n ] . The nonlinear functions in the input-affine model have the form

f  x =[ f 1 x1, x2, x3, d 1, d 2
f 2 x1, x2, x3, d 1, d 2

f 3 x1, x2, x3, d 1, d 2, d 3]
g  x=[const 1

const 2

0 ]
h x =[h1 x1, x2, x3, d 1

x2

x3
] .

The nonlinear model of the turbine is valid within the following operating domain:
0.00305 kgx10.00835 kg
154837 Pax2325637 Pa

650 1/ sx3866 1/ s
The explanation of the variables and parameters of the simplified model is shown in Table 1.

Not. Variable name / Units
mCom

b

mass  in  combustion  chamber 
[kg]

P3 turbine total inlet pressure [Pa]
N rotational speed [1/s]
νfuel mass flowrate of fuel [kg/s]
P1 compressor  inlet  total  pressure 
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[Pa]
T1 compressor  inlet  total 

temperature [K]
Mload loading moment [Nm] 
T4 turbine outlet total temperature 

[K]
Table 1. Most important variables and constants of the model

3. NONLINEAR CONTROLLER DESIGN

3.1 Input/output linearization
The (input-output) linearized model enables that the turbine is asymptotically stabilized with 
a simple linear quadratic (LQ) controller.

It is easy to compute that the relative degree of the turbine model with output being 
the (centered) rotational speed is r=2 in a neighborhood of the operating point, therefore the 
(nonlinear)  zero dynamics is one dimensional. Consider the following nonlinear feedback 
which contains a zeroing input with an additional external input function v: 

u=x xv=
−L f

2hx 
Lg L f hx 

 1
Lg L f h x

v

Applying this  input  function to  the  equations  of  the simplified  model  (Eqs.  (23-25))  we 
obtain that d2x3/dt2=v, therefore the input-output linearized system can be represented by the 
following transfer function from v to y: 

H  s= 1
s2 .

3.2 LQ-servo controller
Our aim here is to design a controller that is able to track a constant reference. For this 
purpose, we extend our linearized model with the following differential equation:

ė=vref− y=vref− x3

For the asymptotic stabilization of the augmented system we design a standard linear 
quadratic (LQ) controller. The weighting matrices of the controller were chosen as

Q=[1 0 0
0 10000 0
0 0 20000], R=1

The resulting stabilizing feedback gain was k=[18.004 161.56 −447.21 ] .

3.3 Constrained linear optimal control
The constrained linear optimal control technique uses the following discrete time LTI system 
form:

x k1=Ax k Buk  , y k =Cxk Du k 
The so-called Constrained Finite Time Optimal Control Problem (see, e.g. [10-11]) is to find 
an input sequence {u0 ,... u N−1} such that it minimizes the cost function

J x , u =x N T PN x N∑k=1

N−1
u k T R u k x k T Q x k 

subject to the constraints
uminu k umax

ymin y k  ymax

Hx k K

where PN, Q and R are positive definite symmetric weighting matrices, H and K are matrices 
defining the polytopic region of the state space inside which the state vector has to evolve. To 
solve the constrained control problem for the LQ-servo controlled gas-turbine model, the 
Multi-Parametric Toolbox (MPT) of Matlab [12] has been used. 
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The constraints for the rotational speed, its derivative and the input were the following:
800n866 1 /s

−500ṅ500 1/ s2

0.00584v fuel0.02419 kg /s
4. SIMULATION RESULTS

Fig. 1 shows the state variables of the system as the loading moment decreases from 50 Nm 
to 30 Nm at t=1s and then from 30 Nm to 20 Nm at t=3s.

Figure 1. Response of the controlled system to step-like loading moment changes

It is visible that the control input, the rotational speed and its time-derivative remain within 
the predefined range. 

5. CONCLUSIONS

A  constrained  linear  optimal  control  has  been  proposed  in  this  paper  for  a  low-power 
industrial gas turbine based on input-output linearization. The nonlinear state space model of 
the gas turbine in input-affine form is based on first engineering principles. In the first step of 
controller design this nonlinear model is input-output linearized and an LQ servo controller is 
developed for the linearized model.  To satisfy the hard constraints on the state and input 
variables, the Finite Time Constrained Optimal Control Problem is solved for the system. The 
simulation results show that good time-domain performance can be reached together with 
keeping the given input and state constraints.
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